Posterior concentration rates for empirical Bayes procedures with applications to Dirichlet process mixtures

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Posterior concentration rates for empirical Bayes procedures with applications to Dirichlet process mixtures

We provide conditions on the statistical model and the prior probability law to derive contraction rates of posterior distributions corresponding to data-dependent priors in an empirical Bayes approach for selecting prior hyper-parameter values. We aim at giving conditions in the same spirit as those in the seminal article of Ghosal and van der Vaart [23]. We then apply the result to specific s...

متن کامل

Nonparametric empirical Bayes for the Dirichlet process mixture model

The Dirichlet process prior allows flexible nonparametric mixture modeling. The number of mixture components is not specified in advance and can grow as new data come in. However, the behavior of the model is sensitive to the choice of the parameters, including an infinite-dimensional distributional parameter G0. Most previous applications have either fixed G0 as a member of a parametric family...

متن کامل

Posterior Convergence Rates of Dirichlet Mixtures at Smooth Densities By

We study the rates of convergence of the posterior distribution for Bayesian density estimation with Dirichlet mixtures of normal distributions as the prior. The true density is assumed to be twice continuously differentiable. The bandwidth is given a sequence of priors which is obtained by scaling a single prior by an appropriate order. In order to handle this problem, we derive a new general ...

متن کامل

Posterior Convergence Rates of Dirichlet Mixtures at Smooth Densities

We study the rates of convergence of the posterior distribution for Bayesian density estimation with Dirichlet mixtures of normal distributions as the prior. The true density is assumed to be twice continuously differentiable. The bandwidth is given a sequence of priors which is obtained by scaling a single prior by an appropriate order. In order to handle this problem, we derive a new general ...

متن کامل

Optimal Bayesian posterior concentration rates with empirical priors

In high-dimensional Bayesian applications, choosing a prior such that the corresponding posterior distribution has optimal asymptotic concentration properties can be restrictive in the sense that the priors supported by theory may not be computationally convenient, and vice versa. This paper develops a general strategy for constructing empirical or data-dependent priors whose corresponding post...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bernoulli

سال: 2018

ISSN: 1350-7265

DOI: 10.3150/16-bej872